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CHAPTER I

INTRODUCTION

1
In 1956 Townes et al. proposed and successfully produced

an oBcillator which utilized the induced emission from an

excited quantum energy state. It was named the maser. A

brief sketch of its principles is as follows.

Two quantum energy states exist. The difference in their

energies is AE. In the presence of an electromagnetic field, a

system in the lower energy state will absorb energy from the field

at a rate A which is sharply peaked when the incident field is of the

frequency f = ---- where h is Planck'sconstant. This rate is propor-

tional to the square of either the electric or magnetic field strength.

Similarly, a system in the upper energy state emits energy to

the field at the same rate A in the same frequency and direc-

tion as the incident field. If an ensemble is composed of a

mixture of systems in the lower and upper energy states, then

the ensemble's absorption is A(nI-n 2 ), where n 1 is the number of

particles in the lower state and n2 is the number of particles

in the upper energy state.

If we wish to make an amplifier, we must obtain from

such a device a field which is larger than the field which we feed

into the device. In a maser, this means that there should be

a net emission of energy by the system into the field. This

requires that A(nl-n 2 ) must be negative or that n 2 > n1 . If the

device were lossless, we would have an amplifier whenever this

requirement is fulfilled. In practice, A(n1 -n 2 ) must be sufficiently

negative to overcome inevitable losses. For an oscillator,

A(nl-n 2 ) must be negative enough to overcome not only its own

losses but the losses in the load as well.

At thermal equilibrium, the lower energy state is always

more heavily populated than the upper state. The ratio is given
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by Boltzmann's distribution

n 2 -AE/kT
7T = eni

Therefore, some process is required to upset this thermal equilibrium

before a maser can be made to operate. This process is called

inversion (because it inverts the population of the states at

thermal equilibrium) or pumping.

In the first maser due to Gordon, Zeiger, and Townes, a

beam of ammonia molecules passed through a multipole electric

field with a gradient which deflects high energy molecules different-

ly from the low energy molecules. Thus, a separation of high and

low energy molecules is achieved. This creates a beam of mole-

cules in which > 1. This beam satisfies the condition for a

maser. This beam is passed on into a cavity which is tuned to the

trans itionfrequency f ="R where h is Planek's constant. If

the Q is high enough to give A (the transition probability) its

proper value, maser oscillation or amplification takes place.

The maser aroused great interest because of two advantages.

(1) As an oscillator it has very great stability.

(2) As an amplifier it has a much lower noise figure than that of

vacuum tubes or transistors.

These advantages were demonstrated by both theory and experi-

ments.

The success of the first maser naturally stimulated vigorous

efforts to improve its characteristics. The ammonia maser had a

low power-handling capacity. One way to overcome this character-

istic is to use a solid as the maser material. The higher density

of active atoms would allow both higher power capacity and com-

pactness. Zeeman levels of paramagnetic ions in solids provide

convenient energy levels for masers in the microwave frequency

range. 4,5



In such a maser, a dielectric solid, containing a small

amount (typically . 05%) of paramagnetic centers, is subject to

a strong d. c. magnetic field. The magnetic moment due to

electron spin interacts with the magnetic field to give an

energy gpl!. 19. , where g and A are constants, T1 is the d. c.

magnetic field, and ' is the electron spin. Discrete quantum

energy levels result from the discrete quantum orientations

of' -with respect to H Such levels can be inverted by several

methods developed in the study of nuclear magnetism. Examples

are adiabatic fast passage (AFP), 1800 pulse inversion or d. c.

field reversal.

These masers can generate a moderate amount of peak

power but have the serious drawback that they can only be

operated as pulsed devices. This is because the inversion process

and maser process can never be simultaneous. First, an inver-

sion process is applied. When this process is over, the maser

process takes over. The maser process can last only as long as

the state of inversion exists. As the maser process proceeds,

inversion is reduced until the maser process is no longer possible.

The system must then be allowed to relax to thermal equilibrium

before the inversion process is applied again. Because of this

limitation, the two-level solid state maser is considered now

only as a measure to reach the millimeter wave region by pulsed

d. c. magnetic fields. 2, 3
4

In 1957 Bloembergen proposed a new type of maser which

could be operated continuously. Briefly, the principle was as

follows.

An atom has three quantum energy states with energies

Ely E2P and E3' respectively. The energy differences are

AE 2 1 , AE 3 2 and AE 3 1 as in Fig. I. At thermal equilibrium,

the probability of occupation of the three levels is given by

Boltzmann's distribution. Each higher level has a smaller

population then its lower neighbor.
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3-

AE 32

E 2  AE 3 1  Figure 1E 2

~E1 3

Now, if a strong electromagnetic field of frequency f=-h is applied

induced transition causes atoms at E1 to be excited to E 3 and atoms at

E 3 to be de-energized to E I. This is called pumping. The induced

transition rates per atom for these two processes are equal for

these equally degenerate states. The net rate is then given by

A(n-n3 ), where A is induced transition rate and n I and n 3 are the

number of units at energy E I and E 3 , respectively. If this rate

A is very much larger than the mechanisms which promote

thermal equilibrium, a steady state is achieved when A(n-n 3 ) = 0.

Therefore, with strong inducing fields, n, = n 3 . This condition

is called saturation. If, furthermore, A is very much larger than

the mechanisms (relaxation) which bring EI and E 3 into thermal

equilibrium with E2 , and these mechanisms are of equal strength

for E and E., the population of E 2 will remain approximately

at its value before pumping. This value is n2 = n 1 AE 2 /kT ,

where n0 is the thermal equilibrium value of n.
1 o- AE/kT 1

n0 +n 0e 31n 0 -LE / kT
1 1_________________ 1 3

After pumpingn I  2 =-(+e

If AE /kT<<I, n2 =n0 (1- A E 2 / k T ), n = n3  no/2 (2-AE/kT)

31 2 1 1 3 131
= n(l - AE 3 1 /2kT). Therefore, inversionis achieved between levels

E 3 and E 2 if AE 3 1 < 2AE 2 1. If AE 3 1 > 2AE 2 1 , inversion is achieved
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between levels E 2 and E l . If the relaxations to E 2 from E and E 3

are not equal, the relations are modified to give

N -W 2 3 AE 3 2 + W2 1 AE 2 13- 2n2 = 23+ W 12+W2

where w0.. is the relaxation rate from level i to level j. Bloembergen13
suggested 5%Ni95%ZnSiF 6 • 6H 2 0 and lGd99%La(C 2 H 5 S0 4 )3 . 9H 2 0

as possible material for his maser.

The three-level maser, as Bloembergen's device is called,
6.

was first successfully operated by McWhorter and Myers using

the Zeeman levels of Cr 3+ in KCr(CN6 ). Kikuchi et al. 7 constructed

a more successful model using the Zeeman levels of Cr in

A12 0 3 (ruby). Ruby masers are now in practical operation as radio-

astronomical preamplifiers at microwave frequencies.

The success of the ruby maser naturally turned the atten-

tion of researchers to other materials which might be suited for

three-level masers. Ruby is an excellent material. However,

practical operation is limited to below approximately 10 krnc.

There exists a need for oscillators and amplifiers at higher fre-

quencies. It is also desirable to operate masers without liquid

helium. The search for new materials is to an extent guided by

Maiman (70) in Quantum Electronics Conference has reported

that ruby masers have been successfully operated at liquid nitro-

gen and dry ice temperatures. There are no reports of its prac-

tical use. It should be noted that if a maser material is suited for

operation at liquid nitrogen temperature, then it can be made to

perform even better at liquid helium. Therefore, it is possible

that masers will always be operated at liquid helium temperature

as long as it is available. The cryogenics involved is expensive

and inconvenient from the point of view of technical application.
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these two considerations. So far, the search has turned up five
promising .naterials. They are beryl, 8 TiO. (rutile)?, 10, 11

TiO2  12 13
MgWO 4 , ZnWO4 , and CaWO4 (calcium tungstate or scheelite 1 '

The first two materials are capable of operation well into the

millimeter wave region. The tungstates are suitable for use in the

10 -40 kmc range. SnO2 is also reported to be under investigation.

CHAPTER II

PARAMAGNETIC RESONANCE IN CRYSTALS:

A REVIEW

The susceptibility of solids differs from that of free atoms

(gas) in that the atoms are ionized in the solid and that these ions

have considerably modified orbital states as the result of the elec-

tric field set up by the other ions in the crystal. Most ions have

complete shells. This, they are diamagnetic. The ions with

incomplete shells can be paramagnetic. If they were not subject

to the crystalline electric field, the paramagnetism would have

contributions from both the orbital and spin magnetic moments

of the ion. However, in many cases the crystalline field "quenches"

the orbital moment and leaves a paramagnetism which is due to

spin alone.

The energy levels used in the three-level maser are the

Zeeman levels of the lowest orbital state of a paramagnetic ion

in a solid. (Higher energy levels cannot be used because only a

very small percentage of the ions are in such states, particularly

at low temperatures. ) The study of maser materials is, therefore,

the study of the lowest energy levels of paramagnetic ions in

crystals.

The theory of paramagnetism in solids was pioneered

by Van Vleck 1 5 in the 1930's. Considerable theoretical develop-

ment also took place in Holland in the 1930's and 1940's. In fact,
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a firm basis of the present theory was well established during this

early period. It is a very remarkable achievement when one con-

siders the fact that the only source of experimental data were sus-

ceptibility measurements. They were not able to observe the energy

levels directly by microwave resonance as we do today.

A new approach to the problem was opened by Zaviosky1 6

in 1945 when he was able to observe microwave paramagnetic

resonance of electrons. Since then, the field has progressed very

rapidly. The major part of the work in the field in the last ten

years has been in England. Good, organized accounts of the

present approach to the theory are given by Bleaney and Stevens 1 7

18
and by Low. Experimental results have been collected by Bowers

20 21 19
and Owens and by Orton. More recently, Koster has developed

a new theory based on group theory. The general theory of atomic
22

spectra is covered completely by Condon and Shortley. The theory

of transitions metal spectra, in particular, is covered by J. S.
78

Griffith. These theories are retraced in some detail in this

chapter.

II. 1 The Hamiltonian for a Paramagnetic Ion in a Crystal

Any discussion of quantum energy levels must begin with the

Hamiltonian. The Hamiltonian for a paramagnetic ion in a crystal is given

by p2 2 2
H- ( - - I ) + I + V + X. 7iS.

i r. r r.. ii

(2. 1)

+ IF. (Ji+2Si)4B

i
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The first term is the kinetic energy of the electrons and the

potential energy of the electrons in the field of the nucleus. The

second term is the potential energy of the electrons in the fields of

each other. The third term is the potential energy of the electrons

in the field of the surrounding crystal. The fourth is the spin-orbit

coupling energy. The last term is the Zeeman energy.

This Hamiltonian is too complex to be solved exactly for the

eigenstates and eigenenergies. In order to use perturbation methods,

the relative magnitudes of the various terms in the Hamiltonian

must be established. The largest terms are the first and second

terms. The relative magnitudes of the remaining terms depend on

the ion in question and its environment.

For the rare earths, it is agreed that the order of the

interactions in descending magnitude is electron-electron

interaction (called Coulomb interaction), spin-orbit coupling,

followed by the crystalline field interaction and the Zeeman

energy. The crystalline field has a relatively weak effect because

the electrons which give rise to paramagnetism in the rare

earths are shielded by an outer complete shell.

In the iron group the situation is not clear cut. The

electrons which contribute to paramagnetism are the outer-

most electrons. They fcel the full effect of the crystalline field.

Consequently, the crystalline field interaction is comparable

to the electron-electron Coulomb interaction. In fact, in many

cases it exceeds an important part of the Coulomb interaction so

that researchers have differed in their approach to the problem.

Bleaney and Stevens 1 7 treat the crystalline field as a perturbation

on the Coulomb interaction. This same approach was taken by Van

Vleck et al. 1 5 in the early analysis of alums. This approach is

outlined in some detail in this chapter.

Other researchers have approached this problem by

considering the crystalline field to be more important than the
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non-central field part of the Coulomb interaction. This is some-

times referred to as the crystalline field representation. Examples

are the presentation of paramagnetic resonance by Bowers and
z0

Owens. In ruby, for example, the optical spectrum is discussed

more readily by the crystalline field representation. Practically

all current literature on the optical spectrum of ruby is given in

this manner. Low 2 3 has also discussed this problem. He finds

that the crystalline field is of such magnitude that it causes a

considerable mixing of eigenstates in the LS coupling scheme where

representation is diagonal in the Coulomb interaction Hamiltonian.

Since we are interested mainly in the paramagnetism

of the iron group, the case of the rare earths is omitted from

further discussion. We will now proceed with the discussion of

the energy levels in the iron group.

Even with perturbation methods, the total Hamiltonian

(2. 1) is still too complex to solve exactly. Therefore, a

simplifying approximation is made in the treatment of the

Coulomb interaction.

II. 2 The Configuration

The simplification is to replace the electron-electron

electrostatic energy as an equivalent central-field potential

energy. This is not an inverse square-law type potential. It

decreases much more rapidly with increasing r (the distance

from the nucleus). When this is done, the term can be lumped

with the nucleus-electron energy to give

2

7 ( i V(r)f (2.2)

for the first three terms. These two terms are the largest

terms in the Hamiltonian. Therefore, this partial Hamil-

tonian can be solved for eigenstates and eigenenergies which,

in turn, can be used as the basis for perturbation calculations

of the states and energies for the complete Hamiltonian.
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This partial Hamiltonian does not involve electron-electron

interactions. Thus, the equation is separable in the coordinates

of each electron. The eigenfunction is the product of single elec-

tron eigenfunctions, and the energy is the sum of individual elec-

tron energies.

The single-electron eigenfunction in the central-field poten-

tial without an inverse square dependence on r differs from the in-

verse square (hydrogen atom) case in that the energy is a function

of I , the orbital angular momentum quantum number. The quan-

tum numbers are still n (radial quantum number), I (orbital

angular momentum quantum number), mI (z-component of orbital

angular momentum), and m s (z-coznponent of spin).

The group of all states having the same quantum numbers n

and I is called a shell. A shell is of particular significance be-

cause of several reasons. When all states in the shell are occupied,

the electrostatic potential due to the electrons in the shell becomes

isotropic (spherically symmetric). The total orbital and total

spin angular momenta of the electrons in the shell become zero.

Therefore, ions with full shells are diamagnetic.

The eigenfunction for atoms or ions with more than one elec-

tron can be formed as a combination (product) of single electron

eigenfunctions. We are interested in the ground state (lowest

energy eigenfunction). This might be formed by taking the lowest

energy state for each electron, were it not for Pauli's exclusion

principle which prohibits such a combination.

The exclusion principle by Pauli states that no two

electrons can occupy identical eigenstates. An alternate state-

ment is that electron eigenfunctions must be anti-symmetric with

respect to permutations of the electrons.

The lowest energy state of a many-electron atom is then

constructed by filling the single-electron eigenstates of the
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atom one by one, starting with the lowest energy

state and moving upward in energy until all the electrons are

assigned to a state. This means that we start with states of

lowest n first. Among states of the same n, the states of lowest

I usually have the lowest energy. Such combination states are

called configurations. Restated, a configuration describes the

state of an atom by specifying the state of each individual electron

without specifying any relation between them. The energy

difference between configurations is usually very large. Therefore,

all other terms in the Hamiltonian are considered to be effective

only within a configuration.

I. 3 The Term

An approximation of the electron-electron electrostatic

interaction by a central-field potential led to a spherically

symmetric central-field potential for a full shell. We have

arrived at a consistent result for this configuration. However,

in the case of an incomplete shell, corrections must be

made to account for the non-central-field nature of the

electron-electron electrostatic interaction. This is done by

grouping together all the electrons in complete shells and

the nucleus into a "pseudo-nucleus" with a central potential

The interaction of the remaining electrons (not in full shells)

with the "pseudo-nucleus" and with each other is then con-

sidered. This is discussed in detail by Condon and Shortley.

It is too involved to be repeated here.

The effect of the non-isotropic electrostatic field due

to incomplete shells is to split the configuration into terms.

It is recalled that the configuration was the classification of

an atomic state by the description of each electron in the atom.

This is approximately true. Deviations from this rule cause

the rare earths to have incomplete shells.
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It did not specify the orientations of the moments of one electron

with respect to another. A term is an atomic state in which the

relative orientations of the angular momenta of the electrons in

a configuration are specified to give particular total moments.

A term is a substate of a configuration. For example, the con-

figuration 3d 2 (two 3d electrons) can give rise to a total orbital

moment which is any integer between 4 and 0. The total spin

can be either 1 or 0. Specification of a particular possible

value for each of the two momenta identifies a term. The lowest

energy term is the term in which the total spin is the maximum

allowed by Pauli's principle. Among terms with this maximum

spin, the term with the largest total orbital moment consistent

with Pauli's principle has the lowest energy. These results

are also known as Hund's rules.

The terms are approximate eigenstates of the atom as

long as the electron-electron interaction is stronger than the

crystalline field or spin-orbit coupling. In the free atom,

the generation of the terms is calle4 Russel-Saunders

coupling.

The energy difference between terms is, again, usually
17

in the optical region. Bleaney and Stevens adopt the approach

in which this splitting is considered greater than that due to the

crystalline field which follows. Mixing of terms due to the

crystalline field is not considered. As we have mentioned

before, this approximation is not very good. The alternate

methods are discussed later in this chapter.

Following the Coulomb interaction, further pertur-

bation and removal of degeneracy occur through the effects

of the crystalline field and spin-orbit interaction. These two

effects are not conveniently treated simultaneously. Therefore,

it is necessary to determine which of the two effects are

dominant. It has been determined that in the iron group, where
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the incomplete shell is the outermost shell of the ion, the electrons

in the shell are sensitive to the crystalline field. The ionic eigen-

states in the crystalline field are considered as the basis upon which

the smaller spin orbit coupling are considered to act.

II. 4 The Effect of the Crystalline Field on the Orbital State

The crystalline field term in the Hamiltonian is due

to the interaction of the electrons in the iron group ion with the

electrostatic field of its charged neighbors. Strictly speaking,

it is the field due to all the other ions in the crystal. However,

it is often estimated by taking the nearest neighbors only.

Because the electrostatic field in question is the field

due to charges other than the field of the central ion, the field

at the central ion can be represented as a general solution to

Laplace's equation up to the radius of the nearest neighbor.

+n

V = r an n mrY ( 0) (2.3)

n m=-n

We are interested only in that part of V which interacts

with the orbital states of the central ion. Therefore, we can

neglect any term in V for which there exist no matrix elements

among the orbital states. That is, if

<ailr nYm'a > = 0n i

for all i and j, the Y term in the potential is ignored.

The atomic orbital states to which this perturbing poten-

tial is applied are combinations of products of single electron

functions. Furthermore, as we have outlined in the previous

section, they are characterized by a particular value of total

orbital moment E and a particular 5, of the total spin.

A typical matrix element of V is of the form

-13-



*' ' *'_ mT.
k% ..... 2 1 Vn k ' k dk

k

= *Vmd (2.4)

Each of the single electron functions 4 k are spherical

harmonics multiplied by a radial function. For the iron group,

all the electrons are in the 3d shell. So we have n=2. The matrix

elements are proportional to

2j. 'Y -m 'Yl Ym dT (2.5)

From the properties of spherical harmonics we know

that this integral is zero unless n < 4 = 21 and m' = +m.

Furthermore, if i' and are of the same orbital moment 1,

the product 'p is an even function. Therefore, for the product

Y _ to be non-zero, Y". must likewise be even. This limits
n n

the interest in n to just the even n's. For the rare earths, where

I = 3, we must take all the even n's up to 21 = 6. This greatly

limits the terms in the crystalline field to be considered.

We can obtain further information about the general

form of the crystalline field by consulting the crystallo-

graphic data on the crystal in question. These sources provide

all the relevant distances to locate the position of a parti-

cular atom in the lattice and the point symmetry about this

position.

The crystalline field about an ion must have a form

which is consistent with the point symmetry about the ion. If

a p-fold rotational symmetry is present, the crystalline field
m

can only contain termsY , where, m is restricted to multi-n
ples of p. If a horizontal reflection plane exists, the values

of m must be even for the iron group; this is necessary because

I is even. Many such relations serve to

-14-



greatly simplify the crystalline field. In fact, if the rotational

symmetry about an ion is sufficiently high, the only relevant

portion ofthecrystalline field is that of axial (cylindrical)

symmetry. An iron group ion in a hexagonal site would be such

an example.

After the simplest relevant form of the crystalline field

is found, the orbital energies and eigenstates under its influence

are calculated. Given the matrix elements of V, this can be

carried exactly for many cases. In the cases of very low symmetry,

the use of perturbation methods may be necessary.

The explicit calculation of the matrix elements can be made

from (2. 4). This is a fairly tedious process because T are anti-

symmetric functions of many electrons. A method which greatly

simplifies the calculation of the non-radial part has been pro-
24

vided by Stevens. In this method, the crystalline field is

replaced by an equivalent operator, which operates on the atomic

orbital states I L, M > instead of the individual electron orbital

states. It is based on the proportionality which exists between

the matrix elements of variables x, y and z as vector operators

and the matrix elements of L , Ly, and L z in a manifold of

constant L. Tables giving the results of explicit calculations
25

using this method are provided by Elliot and Stevens for all

the ions in the iron and rare-earth groups. The results are for

spherical harmonics of unit amplitude. The actual field ampli-

tude is required for the final evaluation of the matrix elements.

In addition, it must be multiplied by the radial part of the matrix

element,

. f2(r)rn+2dr,

where f(r) is the radial part of the electronic orbital function.

This is a factor which is not known to any accuracy. It is

because of the unreliable nature of the values for both the
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crystalline field strength and the function f(r), that the energy

levels in the crystalline field are measured by optical absorption

instead of being calculated. However, the calculations do provide

values of relative energies which are sufficiently reliable to deter-

mine which state is the ground state and the degeneracies of each

level.

II. 5 The Effect of Spin-Orbit and Zeeman Energies, The Case

of the Non-Degenerate Ground Orbital State

The final step in the determination of the lowest energy

levels with the total Hamiltonian is the application of the spin-

orbit coupling term and the Zeeman term in the Hamiltonian. The

current approach to this problem is due to Abragam and Pryce, 26

who separated thep rblem into the case of the non-degenerate

orbital ground state and the case where the orbital ground state is

degenerate. We arrive at such ground states from the splitting of

the term by the crystalline field as described in the preceding

section.

In this case, the degeneracy which exists before the appli-

cation of spin-orbit coupling and the Zeeman energy is just the

degeneracy due to spin. This degeneracy is partially or com-

pletely removed by spin-orbit coupling and completely removed

by the Zeeman energy, in any case. Abragam and Pryce have

developed a spin-Hamiltonian which is a pure spin operator

which is applied to the spin states. In such an operator, the

orbital contribution through spin-orbit coupling and orbital

Zeeman energy are contained in constant coefficients which

can be evaluated by second-order perturbation because the

orbital ground state is non-degenerate.

The spin-orbit and Zeeman energy are given by the

following Hamiltonian:
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X- L. S+H" L+g9H" S- L(S+H)+g ' E (2.6)

If we consider just the spin states associated with the

ground orbital state, the matrix elements are of the form

<0, m1 10, ms >, where 10>

is the orbital ground state. For terms in the Hamiltonian invol-

ving L, this means that the matrix elements will contain a fac-

tor <oj0Jo>. For non-degenerate orbital states, this is always

zero. Therefore, the lowest spin states are independent of the

effects of orbital moments. This is approximately true for large

magnetic fields.

In the range of magnetic fields used for microwave para-

magnetic resonance, this is usually a poor approximation.

The reason for this is that the terms in the Hamiltonian

involving L do have matrix elements connecting the ground

orbital state to excited orbital states. This mixes a small

amount of the excited state into the ground,state, so that in the

second-order approximation, the energy of the spin states

becomes dependent on L. This dependence can be quite large

compared to the Zeeman energy because the spin-orbit

coupling constant is a fairly large constant.

The constant coefficients in the spin-Hamiltonian are

related to the spin-orbit and orbital Zeeman energy by the

second-order energy expression
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I <kI LiO 0 >() Si+ A Hi) 1
2

Ell= i(i=x. y. z)

k E - E k

(2. 7)

<ki Lij O><OI Ljik> (S 2
-(X S iS.-+ZXPH.iS.i+A H.iH.

k, i, j 0 k

The total perturbed energy is then

(2. 7) + g e . " (2.8)

which is usually rewritten

)-(spin = P T " g "9 +  D

where g and D are tensors. The quadratic term in H is disregarded

because it is not a function of S. It cannot contribute to the splitting

of spin states. By proper choice of axes, D and g can usually be

diagonalized.

*spin = P (g x HxSx + gyHySy + gzHzS )

2 2 2 (2.9)
+ D S + Dy S y+ Dz S(.

Terms of higher power in S can be obtained by going to.

expression for higher perturbed energy. However, we know

in advance that the powers of H and S must always add up to

an even number. This is necessary if the spin-Hamiltonian

is to be invariant under time reversal.,

In principle, the spin-Hamiltonian can be derived and the

coefficients computed explicitly if the ground and excited

orbital functions and their energies were known. In practice,

we have only qualitative information about the orbital levels
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and functions. Therefore, only the form of the Hamiltonian is

chosen to fit the point-symmetry of the ion site and the coeffi-

cients determined by measurement.

In this spin-Hamiltonian, the dipole-dipole interaction

between spins and the interaction of any nuclear magnetic mo-

ment with the spin and the orbit have been ignored. These fac-

tors were taken into account by Abragam and Pryce to give a

complete spin-Hamiltonian of the following form:

x s =9. D.1 + P - g. + 1- A- T + T. P. T-yp R. T
S N

(Z. 10)

where g, D and A are tensors of rank 2, T is the nuclear spin.

The spin-Hamiltonian appropriate to various common

symmetry are given below.

Trigonal

( = (g H S + g.LHxS + LHySy) + DS Z + 35-_z +lxZ x x y y zTiW(z 7

2 5 S2 a 4 S4 S4sz+ 7z)+16(Sx+ y z

= (g 11 HzSz+ g.L (H5 S + H S )) DS 2 +7 nFa
x y z

IS4 _6 2 5 2 /~50a ( 3+3 )+S3+ 3 )z -7s(s+l) Sz +n [ s(+ -(s +s)s]
Orthorhombic

S= A(g HS +  g +H S +gzHDS)+D S 2 +x DyS2 + D Sz2

+DS +E(S2 -S
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Tetragonal

'N =P[gllHzSz+g.(H sSx+HySy)DS' S4 76-4S(S+l)S4 IS ]

+ 6(S4+S +S4xy z

Cubic

''g;.+(Sx+S +S

One additional simplification can be made in many cases

of high symmetry. This is due to the limited freedom of response
1

of small spin manifolds to their environment. A spin of - can
have only two orientations: up or down. But the even parity of all

spin-Hamiltonian always makes these two directions equivalent.

The only distinction which such a limited spin manifold can make

is a difference in the elements of the g-tensor.

A spin of 1 can distinguish a monoclinic symmetry but

no more. A symmetry which is higher can be represented only

by an axially symmetric or spherically symmetric spin-Hamil-

tonian with the exception of the g-tensor. A spin of 3/2 can dis-

tinguish a symmetry as high as orthorhombic; higher symmetries

can be represented by an axial or spherical Hamiltonian except

for the g-tensor. A spin of 2 can distinguish symmetries up to

and including trigonal symmetry. Finally, a spin of 5/2 is ca-

pable of distinguishing any symmetry representable by spheri-

cal harmonics of order 4.

For ions of iron group, it is found that the crystalline

field about the ion is almost always approximately cubic. The

reason for this lies in the ratio of ionic radii of iron group

ions to common anion neighbors, particularly oxygen.

Relatively small distortions from cubic symmetry are in the

form of distortions along one or more axes of the cube pro-

ducing tetragonal or orthorhombic symmetry or a distortion
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along a body diagonal to produce trigonal symmetry. The spin-

Hamiltonian then takes a cubic form with terms of lower symmetry

added. When these terms are of sufficiently low symmetry, such

that they can be expressed in spherical harmonics of the order 2,

they take on a relative magnitude disproportionately large com-

pared to the cubic part of the spin-Hamiltonian. This is because

terms in the spin-Hamiltonian which are equivalent to spherical

harmonics of order 2 are the result of second-order pertur-

bation; whereas, the cubic part must be the result of fourth

order perturbation. Thus, a small quadratic term in the crys-

talline field can produce a coefficient in the spin-Hamiltonian

which is much larger than that produced by a large cubic

potential. Thus, except for very exceptional cases, the quad-

ratic terms in the spin-Hamiltonian are, by far, the most im-

portant ones when they exist. We can discuss the qualitative

behavior of the spin under the spin-Hamiltonian by just taking

the quadratic terms whenever the symmetry is non-cubic.

II. 6 Zero-Field Splitting

One of the very important features of the spin-Hamil-

tonian is that the degeneracy of the spin states is partially

removed even in the absence of a magnetic field. Taking the

simple, axially symmetric Hamiltonian as an example, we

have

H s =1. D- 9 = DS 2

z

This Hamiltonian splits the spin states into levels given by

e Dm 2, where m is the z-component of the spin moment.

This gives levels determined by I mzI and results in doubly

degenerate levels (+mz, -mz) except for the state m z = 0. If

the number of electrons is odd so that the spin is half-integral,
27

all the levels become doubly degenerate. Kramer has proved
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that this must always occur for an odd number of electrons

regardless of the symmetry.

Inan orthorhombic symmetry, for example, the spin-

Hamiltonian is

2 22 2 2 2DS +E(Sx-S ) =DS? + E/Z(S +S

where,

S+ = Sx +iS y and S =S x -iS.

This Hamiltonian mixes states m + 2 with the state m . For

S = 3/2, we obtain two levels both doubly degenerate. The ma-

trix of M 8 is

+3/2 -1/2 -3/2 +1/2

3/2 9D/4 %3M 0 0

-1/2 4'M D/4 0 0

-3/2 0 - 9D/4 4M

+1/2 0 0 47E- D/4

The energies are solutions to the secular equation

(fD- )(-e)- 3E 2 = 0

9 D2  10 2 2 (2.11)
-- -DE +E - 3E = 0

They are

A] 
5 ~)4(-WD -3E2

5 2 2
-. D+ DZ+3E2
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The spin states are obtained by substitution of back into the

secular equation. They are

+3E2 D ±72  
>

+ 2 2
'e 7D-3-E+ J (D 2 +3E -z_ +VD+E

SAl 3 >-BIT >

and B I+± > - A IT >

for the upper and lower energies, respectively.

The physical reason for this energy splitting in zero

field is as follows. A stationary electrostatic field locks the

electrons inthe lowest energy position. If there is only one such

position, the electrons are stationary and lose their orbital

moment. Spin-orbit coupling re-induces a small amount of

orbital moment which, in the second-order perturbation,

reduces the energy by the spin-orbit energy. If the ion were

situated in an isotropic environment, the amount of induced

orbital moment and the resulting spin-orbit energy would be

equal for all orientations of spin. Thus, we would have no zero-

field splitting. If the environment is anisotropic, the amount of

induced orbital moment can differ for different orientations

of the spin. This results in zero-field splitting. Because of the

magnitude of the spin-orbit coupling constant (NJOO cm. ),

only a small difference in orbital moment can result in

zero-field splitting in the range of a microwave quantum.

II. 7 The Zeeman Energy

The energy which a magnetic moment acquires in a

magnetic field is called the Zeeman energy. because of the

quantization of the magnetic moment in the direction of the

applied field, ZJ+l discrete levels result from the applica-

tion of the magnetic field. It is represented in the spin-

Hamiltonian by the term,
-23-



PR " g''

If the coordinates are chosen properly with respect to

the crystalline field, the g-tensor is usually diagonal. In this

case

•g = (gxHxSx + gyHySy + gzHzSZ)

For a pure spin state gx = gy = gz = 2. 003. Thus, we have

P.M . g.1 = gP1 . .

In the spin-Hamiltonian, the small orbital component in

the magnetic moment causes g to deviate from the pure spin

value. Mathematically, this is due to the cross-terms between

H and S in the second-order perturbed energy expression used

in the derivation of the spin-Hamiltonian.

<01 Li k >(X +P l

k 
E - Ek

which gives for the coefficient of the terms P i s

I <01LiLk>Il 2

k Eo E k

This quantity is added to 2. 003 to form g.

Physically, this quantity can be explained in the fol-

lowing way. To first approximation, the orbital moment is

zero. The presence of spin and the application of a magnetic

field both serve to induce a small amount of orbital moment
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by mixing excited orbital states. The spin interacting with orbital

moment induced by itself gives zero-field splitting. The spin

interacting with the orbital moment induced by the applied magne-

tic field contributes to g. Similarly, the magnetic field inter-

acting with the orbital moment induced by the spin contributes

an equal amount to g. In fact, the deviation of g from 2. 003 is

a direct measure of the induced orbital moment.

(g- 2. 003)i = Z .(XS+P H)

The close relation between zero-field splitting and the

deviation of g from 2. 003 has been pointed out by Bleaney and16
Stevens. Namely,

(gi - 2. 003)

-1

X is of the order of 100 cm This shows that a deviation of g

from 2. 003 of . 01 can cause a zero-field splitting up to . 5 cm - 1.

The zero-field splitting is due to the difference in D in different

directions. Therefore, it can be expected to be somewhat smaller

unless the Di are of different signs.

In ions where the ground term in the configuration has

no angular momentum the physical basis for the spin-Hamil-

tonian is quite different, and these relations may not hold.

II. 8 Hyperfine Structure

The term 9. A- T in the spin-Hamiltonian represents

the interaction of the nuclear magnetic moment (spin) of the

paramagnetic ion with its electrons. This is a static dipole-

dipole interaction which is govexned by the relative orienta-

tions and positions of the two moments.
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The effect is to split each electronic spin level into 21+ 1 levels,

the spacing between the new levels being proportional to the

value M s of the spin state. As the result, each allowed spin

transition, Am = + 1, is now split into 21+ 1 separate transitions.

The transitions are equally spaced in frequency with

Af=A

when A is expressed in frequency. This group of 21+1 lines

is called the hyperfine structure of a line. This is illus-

trated for the simple case of 1" A.I = A- T, S=2 and

I=l in Fig. 2.

When A is large compared to the width of the line, the

21+1 lines are distinct. They are easily indentified by their

equal intensities and equal spacings. This provides one way for

the identification of paramagnetic ions which possess known

nuclear spin. When A is small compared to the line width,

it simply contributes to the line width as inhomogenous

broadening.

Interaction with the nuclear moments of neighboring nuclei

is also present when such moments exist. This causes addi-

tional splitting of the resonance line. The splitting is naturally

small and consists of a great many lines. Tinkham2 8 was

able to resolve these lines in the resonance of iron group

impurities in ZnF More often, these lines are not resolved

and contribute to the line width as inhomogeneous broadening.

II. 9 The Case of the Degenerate Orbital Ground State

When the ground orbital state is degenerate before

the consideration of spin-orbit coupling, the spin- Hamiltonian,

which was based on a second-order perturbation of the

orbital state, is no longer valid. Spin-orbit coupling will

completely mix the degerate orbital states. The qigenstates

must be obtained by exact diagonalization of the spin-orbit

matrix.
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The liberal mixing of the orbital states generally

results in a large orbital moment. This has the following

effect of the paramagnetic behavior of the ion:

(a) The value of g deviates considerably from 2.

(b) The zero-field splitting becomes very large,

usually beyond the microwave range.

(c) The relaxation time T1 becomes very short.

The last two effects make this case unfit for maser applications.

There ia, however, one special case where, in spite

of an orbital degeneracy, the orbital moment is small. This is

the case of Cr2+ in an octahedral (6-coordination cubic) field,

Fe2 + in a cubic (8-coordination cubic) field, and Cu Z + in an

octahedral field. * These orbital ground states are doubly

degenerate but have the special property that they are non-

magnetic. 29 That is, the matrix of E is identically zero

within the doublet. When the field is not strictly cubic, the

states become weakly magnetic, and the degeneracy is

removed except in the case of trigonal symmetry. Cr+Z

in the rhombic field of CrSO 0 5H 2 0 was found to have a g of

1. 95 for g,, and 1. 99 for g..

In a trigonal symmetry, the states remain degeneracy

but acquire a magnetic moment L z in proportion to the amount

of the trigonal distortion. In this case, it is speculated that a

distortion of the symmetry takes place, which removes the

degeneracy and lowers the energy of one of the states. This

is called the Jahn-Teller effect. 31The effect was originally

proposed for molecular complexes. However, it has been

applied to iron group ions in hydrated salts by Van Vleck. 32

33 2+
Bleaney et al. have observed a spectrum of Cu at low

* The 6-coordination cubic and 8-coordination cubic have the

same form of field when expressed in spherical harmonics,

but the polarity is reversed. Thus, the lowest levels in one

become the highest levels in the other.
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temperature which could be explained by the Jahn-Teller effect.

The case of Cu 2 + in the hydrated salts of trigonal symmetry

(fluosilicates, etc. ) is explained in the following manner. The de-

generacy in the trigonal field is removed by a Jahn-Teller distortion.

But the lowest orbital state has three equivalent orientations so

that three separate spectra are observed. At high temperature,

these orientations become mixed, and the spectrum becomes

isotropic. (The spectrum of Cu 2 + in a trigonal field would be

almost isotropic if the orbital ground state were non-degenerate.

II. 10 Other Methods for the Analysis of Paramagnetic Ions

26

The spin-Hamiltonian of Abragam and Pryce was based

on a perturbation calculation in which the crystalline field is

weaker than the electrostatic force between the electrons in the

ion but stronger than the spin-orbit coupling. This made the ground

term in the configuration the starting point in the calculation.

The spin-Hamiltonian is explained in another way by Bowers
20

and Owens in their review of paramagnetic resonance. Their

starting point is the configuration. The crystal field acts on

each electron in the configuration, splitting the orbital degeneracy

of the single electrons. If n electrons of the same shell form the

configuration, the electrons are assigned to occupy the n

lowest energy orbitals of an isolated electron in the

crystal field. This forms the ground state. The proper

degeneracy in the orbital ground state is obtained this way.

The form of the Hamiltonian was obtained only from the know-

ledge of the ground orbital state degeneracy and the crystal-

line field symmetry. Therefore, either method yields the same

result. To the inexperienced researcher, it is somewhat
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surprising that the second approach, which ignores the electro-

static repulsion between the magnetic electrons, gives the

proper ground state.

In optical work, however, the approach of Bowers and

Owens is the accepted one. This is known as the crystalline

field approximation because it assumes that the crystalline

field is dominant over the electron-electron electrostatic

field. The reason for this difference in approach is that, as

far as the ground orbital state is concerned, the Russel-

Saunders approach is good. However, the higher energy

levels of the ground term in the crystalline field approach

the lowest levels of the next highest term, and considerable

mixing occurs. The Russel-Saunders coupling is no longer

accurate. Thus, for optical work it is a poor approximation.

Some light is shed on this problem by the recent work
23

of Racah, Low et al. They have undertaken a project of

.finding the energy levels and states of iron group and rare-

earth ions in a cubic field. It is to be extended to lower

symmetries. They have found, by use of a computer, the

exact levels and states starting from the LSJM representation.

This is a representation in which the spin-orbit coupling is

diagonal. Although the crystalline field is stronger than

the spin-orbit coupling, this introduces no inaccuracy because

the computer solves the problem exactly without resorting

to perturbation methods. All the terms in the configuration

with the ground S-state are used.

The result shows that the ground orbital state is very

nearly the state given by the Russel-Saunders coupling. Most

of the excited states cannot be represented even approximately

by the Russel-Saunders coupling.
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II. 11 Koster's Mqthod

Koster '34 has developed a group-theoretical method

by which the number of independent terms required in a com-

plete spin-Hamiltonian is given.

In this approach, it is assumed that the eigenstates

and energies for the complete Hamiltonian, in the absence of

a magnetic field, is solved. This includes all the terms in the

complete Hamiltonian including the crystalline field and

spin-orbit coupling. The Zeeman energy term is then applied

as a perturbation. This method predicted many more inde-

pendent terms than those included in the spin-Hamiltonian

by Abragam and Pryce. For example, for S= 3/2, the spin-

Hamiltonian of Abragam and Pryce terminates with terms in
2 3

S. . Koster's method includes the terms HiS .1 1
We note that such terms are allowed by the time-

reversal symmetry of the spin-Hamiltonian. In fact, they

would have appeared in the original Hamiltonian if the per-

turbation were carried out to the fourth order. But so would

a number of other terms of the form H S and H 3S. Why

are these terms not predicted in Koster's complete spin-

Hamiltonian?

The reason lies in the fact that Koster's method still

had to resort to the perturbation method for the final step.

It is a first-order perturbation expression. Higher order

perturbation is necessary to produce terms of higher power

in H. Physically, omission of higher order perturbation in

the orbital Zeeman energy means that the induction of

orbital moment by the magnetic field is ignored. This is

actually a very good approximation. The spin-orbit energy,

which is the next least powerful term in the total Hamiltonian,

is at least 100 times stronger than the orbital Zeeman term

at practical magnetic fields.
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Experimental evidence of the additional energy terms
35

predicted by Koster has been reported. The effect is

small. It appears that in most cases they can be neglected.

II, 12 The Theory of T 1

When the spin system is not in thermal equilibrium

with a thermal bath with which it is in contact, it will relax

into equilibrium in a characteristic time T1 in the absence of

a driving source. The relaxation time T 1 is a measure of the

contact (or lack of contact) with the thermal bath.

The problem of spin relaxation has been studied by
36

Van Vleck. His results were not completely satisfactory,

but the approach is generally accepted. The principles of his

theory are reviewed here. Mattuck and Strandberg 7 9 have

restudied the problem and have arrived at substantially the

same results.

Quantum mechanically, thermal spin relaxation is

treated as the transition between spin-states under the excita-

tion due to the thermal bath (in this case, the lattice). The

transition rate is the reciprocal of T .

Spins can interact only with magnetic fields. The

lattice, on the other hand, is non-magnetic. Therefore, to

first order, there is no thermal contact and T1 is infinite.

However, a contact of the second order does exist. In this

process, the time-varying electric field, due to the thermal

vibration of the lattice, interacts with the electrons in the

paramagnetic ion. This affects the orbital moment of the ion

which, in turn, interacts with the spin to induce the required

transition.

The total Hamiltonian for the spin and lattice in mutual

contact is

=o + X XL+)+so+40 OL+ XSS (Z. 13)
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MO is the energy of the orbital state in the crystalline field

without the spin-orbit coupling, K L is the energy of the lattice

vibrations, )4 is the Zeeman energy, M(so is the spin-orbit

energy, )(OL is the orbit-lattice coupling energy, and HSS ip

the spin-spin interaction which introduces line width. X 0 +

)(L is taken as the unperturbed Hamiltonian, and the remain-

der is the perturbing Hamiltonian. It acts on the manifold of

eigenstates of ( 0 and *(L"

The transition from the spin state I + > to -> is

computed by using a "new" effective Hamiltonian.

new(ii,) Y D ('(ij)j'(j, k)]X'(k, i')] (2. 14)

j,k hv(ij)hv(jk)

The indices, i, j, k and i' designate compound states of

spin, orbit and lattice. i and i' designate the ground orbital

state with spin states I - > and I +>, respectively.

The matrix element H'(ij) is a sum

-'(ij) = So(i) +)4OL(ii) +) z(ii) +H}ss(ii) (2.15)

When the ground orbital state is a singlet, Hso(ij) and

HOL(iJ) are zero whenever j contains the orbital ground state.

Therefore, the sum over j and k are over states containing

only excited states. When Eq. (2. 15) is substituted into Eq.

(2. 14) among the products we find

)XS0 (p + n i , q "'hi)XS0(,q- n i, r-n 1))4 OL (r-n i , P-n i+l)

(2.16)
[E(p) - E(q)l[E(q) - E(r)]

and all the permutations thereof. Such terms represent third

order transitions from the state I + > to I - >. At the same

time, the lattice state changes from n. to n. +1. The spin and1 1

the lattice exchange energy. Second order terms cancel out

almost completely.
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The transition probability is proportional to the square

of new(ii'). It be seen from (2.16) that the probability is

proportional to . is the spin orbit coupling and Ais the

energy separation between the orbital levels in a crystalline

field. These separations are not equal by any means, but for

a qualitative discussion, they are all equated to a single A.

The factor Swas previously encountered in the deriva-

tion of the spin-Hamiltonian. It represents an orbital moment

induced by spin-orbit coupling in an otherwise "quenched"

state. It was responsible for zero-field splitting and the

deviation of g from 2. In fact, the deviation of g from 2 was

given by . Therefore, the g-factor is a convenient index

by which relative relaxation times can be estimated. A long

relaxation time is incompatible with a large deviation of g

from 2.

The strength of the crystalline field enters into T1

in two ways. Ais proportional to the strength and so is
1

X L" Since I or the transition probability is proportional

to 2
MOL

it appears that a strong field results in a longer relaxation

time. The quartic dependence of the transition probability

on X indicates that a very large variation of T 1 is expected in

the iron group. V2 + has a X of 55 cm) 1 while Cu Z + has
-1-852 cm . This would indicate a ratio of relaxation times

of the order of (15) 4 50, 000.
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CHAPTER III

THE RELATIONSHIP BETWEEN THE MATERIAL

PARAMETERS AND MASER PERFORMANCE

II. 1 Bloch's Equations

A brief review is made of the two-level maser to show

the relation between parameters of the maser material and the

maser performance. This relation is valid also for three-level

masers with only a simple correction.

We have a paramagnetic solid containing N particles per

unit volume, each with a spin of 1/2. In the presence of a mag-

netic field, the spin state m s = 1/2 will have an energy 2PH0

higher than the state m s = -1/2. Here P is the Bohr magneton,

and H is the dc magnetic field. Boltzmann's distribution

gives a population of the lower state which is larger than the

population of the higher state by

1 -A E/KT

AN = NO 1 (3.1)
01+1 EK

where K is Boltzmann's constant, and T is the temperature in
AT

Kelvin. If AE << KT, AN T N o = . We have as the result

a net induced magnetic moment which we shall call

AE
ILo = P AN = P AE

The net angular momentum in units of1, is -A= M o . The

analysis of a maser can be made while restricting our-

selves to M0 because the remainder of the spins will always

cancel itself out.

The behavior of the net moment M under a time-
0 37

varying magnetic field excitation was analyzed by Bloch
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in connection with nuclear magnetic resonance. The treatment

was made by the now famous Bloch equations. These are classi-

cal equations. However, they give results which are in perfect

agreement with experiments and with quantum mechanical

analysis for the simple cases where quantum mechanical analysis

is possible. In addition, relaxation effects can be included in a

simple way; whereas, in a quantum mechanical treatment it is

extremely complex.

The equations are basically the equations of the spinning

top.
dFN1 = T (torque) = yMXR (3.2)

y is the ratio of magnetic moment to the mechanical angular

momentum. (For an electron this is ?.- =. 92?xL07 . ) Here, H

is the total magnetic field. Equation (3, 2) can be written for a

rectangular coordinate system rotating about the z-axis with

an angular velocity w.

dM(31
dMt-- -wXF + yK4XFI =X(yll + W)(.

where H is now

H "  H' H'
H + H  cost] + [ cos 2Wt + f+ . t-sin2t]

The three components of this equation are

dM 2 YHf.
dt = y -(Ho0+ H r. f. CosWt) +W] +M z . __T sin 2wt

dM H -  H -

= [.Y(r.. + .- Cos 2wt)] -Mx[ y(Ho + H 2 fcos Wt)+W]

dMY f.
_--M x  sinZ t-M y[(Hr f. Cos 2wt)]
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As it stands, these equations are very difficult to solve.

A very large simplification is made by ignoring the terms which

are time varying. This would be justified if the resulting

solution turns out to be a slowly varying function compared to

the terms which were ignored.

The simplified equations are

dM

7 M y (yH o + )

dM HI
r.f..=t Mz y YZ- Mx 0o+ (3.4)

--- = - Myy 2

The solutions are

M M°Hr" f ."  sin Q/2t

M MYHr"f"(YH °+) 1)

x - 0 (l-cosQl12 t) (3.5)

M N2r f. 1/2 (YHo + W)2
M 0 -o r.cosQ + Qz Q 4 Q

-Y 2Hr f.

where Q = 4Z + (YH0 
+ W)

In the special case of yH 0 +W = 0,

M =O andx

Mz = M 0 cos Y"r-- t (3.6)

H
My = M ° sin y -r.f. t

This shows that M rotates about the x-axis with an angular

velocity
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YHr 
(3.7)

Noting that only one circularly polarized component of Hrf.re-

mains in the solution, we can call it H' to simplify the expressions.

W1 = yH' (3. 8)

This is just a free precession of M about the rotating fieldo

H'. This condition is referred to as magnetic resonance.

The equation and solution just given do not include

relaxation effects. Bloch took relaxation into account by

inserting two damping times T 1 and T2 in the following

manner.

dM M
SxMy(yH ° + W) - -

2

dM M
-M .( -9)

dM z  (Mz-M o )
= -MyyH -

H' is the circularly polarized component of H .f.rotating at an

angular frequency +w about the z-axis.

These relaxation times are necessary for the following

reasons. First, there is a continuous drainage of energy from

the spin system by whatever mechanisms which exist that are

trying to bring the spins into thermal equilibrium. The energy

of the spin system is proportional to -M z when the d. c. mag-

netic field is in the z-direction. Therefore, a time constant

T is inserted to point M z towards its thermal equilibrium

value M . Secondly, the net spin moment M is not a single

moment but is composed of many spins oriented in the same
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direction. This orientation is imposed by the Boltzmann's

distribution when the M is in the z-direction. But when M
0 0

is in the x-y plane, it should relax towards the thermal equi-

librium value for this direction which is zero. In addition,

the dipole-dipole interaction between the component spins try

to destroy M o . Thus, for transverse components of M,

Bloch added a damping term

ML
ML-, ,where T < T.
2

The solution to Bloch's equation with relaxation is very

involved for transient cases. The steady state solution

is very easy to obtain. It is

H(yH)+1 + o(Y0 + _2+T-2 ] ".-

M = (3.10)

y (o+)y21 z
T 1I T 2  T

yH'Mo (yH 0+W)

Y T2Y)2+1 0 T 2, TY

M = M 0 (H0+

T Z2 1

(yH 0 +W) +y H'

at resonance yH o +w = 0. Then

M =0
x
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yH'M oT 2  1
1 + yH'Z T1T 2

M
M =0

S1+y -YH'Z T T 2

If T were infinite, M x = My = M z = 0. When T1 is finite,

as it always is, M y and M become non-zero. Physically, it isy z
easy to see why My must not be zero. A finite T I means that

losses are present. It indicates the presence of a damping force

on R. In a steady-state condition, an equal and opposite force

must exist which balances out the damping force. This is

provided by IXR = H " M . For any transfer of energy to takex y
place in the total spin system, some transverse M must be

preserved even when T 2 is present. The non-zero value of Mz

represents the extent to which the damping forces V towards

its thermal equilibrium value.

The amount of energy absorbed by the spin system from
the resonant magnetic field can be computed by simply equating

it to the loss in the system.
M -iM

P= z T 1- ) 2PH = rate of energy loss due to T1.

T 2T2 2,2 T, 3 z
NH 0Y + wo) +-- + y]' rT22

The results of Bloch's equations can also be expressed

in terms of susceptibilities.
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I = 2P M
H H

M
xDC 2 H

f 0 (3.13)

x
M YM. 2A

x"Ai = 02p -2

rf x T2 (yH +)2 +1 +Y 2H T

T 2  
T2

When the standard phaarer notation is used for the time-

varying quantities, the susceptibility can be represented as

a complex quantity. x = (x'+jx"), where x" is a negative be-
1 , ,2

cause y is negative. In terms of the susceptibility, P=- -wx"H'2
The solutions to Bloch's equation have certain weaknesses.

One is that the equations do not allow for the maintenance of a
38

transverse moment. This was pointed out by Redfield. The
preservation of transverse moments for times up to T has

391

been demonstrated .experimentally. This is of some

consequence in transient behavior when large differences

exist between T 1 and T 2 but cause no difficulty in steady-state

electron resonance. Another difficulty is that the power ab-

sorption pattern, as a function of frequency which is referred

to as "line shape, " is always Lorentzian with the Bloch

equations. Experimentally, it is not always Lorentzian.

The value of x" obtained by Bloch's equation is inde-

pendent of the magnitude of the individual moments which

make up the total moment. This is an expected weakness of

a classical treatment. The proper dependence can be found

by a simple quantum-mechanical treatment omitting explicit

relaxation effects.

From the Bloch's equation we had
2 1 2,

P = -2W"H' = - -wxH

where H' was one circularly polarized component of H . Therefore,
x
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H = 2H'. We can consider this to be the definition x". The samex
power P can be written

P = (number of transitions) (energy of each transition)

x(rate of each transition) = AN. AE " A

where A is the transition probability of a single ion. The quan-

tum mechanical transition probability is given by

A = 1p(k)I HknI 

where Hkn is the matrix element of the perturbing Hamiltonian

which induces the transition between states d k and nP and
dN .I h e st sgv nap(k) is the denstiy of states .If the density is given as

dN then k

2w

A p(w) I Hkn 2

For a perturbing Hamiltonian gp H x - Sx

I Hkni 2 =g 2P 2 1<kH xS x l n>1 2

If the spin states are pure, only one component of Hx, namely

H' contributes to the transition, giving

2 2 2 22

Hk I =(g P Ht /4)1 <kI S+I n>I1

p(w) can be interpreted as the line broadening. We can identi-

fy this with

1

2 1 2 2 T1
wT 2[ yHo +w)+ - 2 + HY

T 2  2
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which we found in the solution to Bloch's equations. If A

represents the transition probability of one ion, then p(w)

must be normalized so that

S p(w)dw = 1.
-00

Integration of the line-shape factor

1

2 1 2 2 T 1TR-YH+ W) + . + 2H,
TT 2

shows it to be r. Therefore,

w(T) [ 0

T 1 2 2-rT2 [(yHo+c )z T--2  + y H'

Substitution into P gives

Pw t g ZH' J<k I S+j n> I
P= AN TE .

T2 [ (YHo+ w) 2+- 1 +Y2 H'2T
T2  2

> 12
2AN' - 2 2 2 k n

-1 ,H 1 1 2 ,2 T 1i
T-[ (¥Ho+W + + H" '

T 2 2

x LZg g P22 I <klS _+ I n> 12

4 T 1[(yH+ W)2+ T + Y 2 H, 2 T 1  (3.14)

T 2  2
The line width of the transition is given by the factor

p(w). If the applied r. f. magnetic field is sufficiently weak so

that the last term in the denominator can be neglected, the

half-power point in the paramagnetic absorption is given by

-43-



(YH0 + 1

When the applied r. f. magnetic field is large enough so the

last term is not negligible, the half-power point is increased

to 2

(-yH +W) + N H'
0 T2 2

The maximum absorption which occurs at resonance is also

reduced because of the increase in the denominator. This

condition is called saturation.

IJI. 2 The Reflection Cavity Maser

A maser can be constructed by placing a suitable

paramagnetic material within a reflection cavity. The equi-

valent circuit of such a device is shown in Fig. 3.

L 0 R: Rc Rm C

Figure 3

In this circuit, L and C represent the cavity. R representsc
the resistive and dielectric losses in the cavity walls and in

the maser material. Rm is the absorption due to the imaginary

part of the susceptibility, x" . The relation between x" and Rm

can be shown as follows. The power absorbed due to x" is

-2 x"H'2 1Z- X x
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The Q of a cavity due to losses arising from x" alone is

wX(energy stored)
Power dissipated by x"

2wH 2' Hdv

- x" fH dv
x

2
x1 (3, 15)

where 1 =
f H dv

We recall that H' is one circularly polarized component of

H"L ; whereas, HA is the total magnetic field intensity, Thus,
is always less than unity. If Q is the Q due to Rc alone,

the effective resistance representing x" is

RcQ Rc . 2
Rm -11o C (3.16)

0 0

The total conductance of the cavity at resonance is

I I

R Rm c

The cavity is connected to a source and load through

a waveguide. This coupling can be represented as a trans-

former as in Fig. 4. The source (load) can be transformed

to the secondary side to give a new equivalent circuit as in

Fig. 5.

In this maser the source and the load are the same.

It can be shown that such a maser suffers from the fault that

a large portion of the source power is dissipated in the source

(load) impedance without being amplified by the maser.
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This weakness is avoided by an insertion of a "circulator"

between the maser cavity and the load and source. The circulator is

a three-terminal-pair device in which energy flows only in one

sequence: a-+ b--*c. A maser using the circulator is shown in Fig. 6.

Now all the source power is incident on the maser. All the

output (reflection) from the maser is delivered to the load.

The power delivered to the load is obtained by simply

taking the reflected power from the cavity as computed from trans-

mission line equations.

M

R L R R

Figure 4
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Ll R R C
0 C m

Figure 5

Load
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ZL+ZO Y 0 (3.17)Z L+Z o  Yo+YLL

PL = P in' r2  (3.18)

For our maser we have

y = 1
0 R1

0

I 1
RnII R 1

l/R' -1/R -I1/Rr = R-m R (3.19)

1/R' +1/Rm+/ R co m

The condition for amplification is that

co> r > 1
1 1

This is achieved when r- + -R becomes negative so that the

numerator of Eq. (3.18) is larger than the denominator. When
+ -L is sufficiently negative to make the denominator vanish,

Rm Rc
the maser becomes an oscillator.

The gain of a maser was given as

rZ =m c 0") ir- r

-7- = I I

R' is the parallel resistance of Rc and Rm . To obtain gain, thec
following conditions are necessary or desirable:

(1) R m < 0

(2) IRmI <Rc
3) 1 - + be as small a positive quantity

0 W~o + c as possible
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It is clear that to obtain amplification with a given Rc and Ro, we

need a negative Rm with IRm j sufficiently small. This, in turn,

demands that x" be sufficiently large. x", in turn, was given by

(3. 14) at resonance: -& AN41 2 T 2 . AN is the population difference

between states 1 and 2, and jL2 is the matrix element of the spin

moment between states I and 2. This shows that gain is easier to

obtain when

(I) The quantity AN is large. In other words, we have

a large inversion.

(2) L12 is large.

(3) T 2 is long.

Going back to the expression for gain, we see that another

way to obtain higher gain when the conditions for amplification are

already satisfied, is to increase R. For a given source and load

impedance, this indicates-that the coupling between the input-output

waveguide and the maser cavity should be made small. While this

is certainly true, it restricts the bandwidth.

The bandwidth of the maser can be limited by either the

cavity bandwidth or the paramagnetic resonance line width of the

material. The addition of the maser material with negative

resistance serves to raise the Q. The expression for cavity

bandwidth is

R R
Af f( 1+ + 1c + cRm Q(3.20)

L m c c 0

For negative R m

f Rc - Rc (3.21)

c 0 m

According to this expression, the cavity bandwidth of the maser

cavity is a function of both R' and Rm.
0 m
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The bandwidth of the empty cavity, when it is decoupled

from the load, is determined by Qc" This is about 5, 000-10, 000.

The corresponding bandwidth at 10 gc is about Z mc. The actual

cavity bandwidth for a maser can be considerably narrower or

broader. The presence of RI broadens the bandwidth while the

presence of a negative Rm reduces the bandwidth.

When the bandwidth of the maser is limited by the cavity,

Terhune4 0 shows that, although the gain-bandwidth product is not

constant, the product (GI/2- 1). B is constant for a given Rm and Rc .

(G /-1) • B=

l/QL -1/Q M-l/QC f 1Zf 1

IjI/QL -I/QM+l/Qc f QC QC 0 L QM I .( i

For a negative Rm, it is 2f (I

If the gain is increased by increasing R, the bandwidth is

correspondingly decreased. The gain-bandwidth product is increased

by decreasing I R MI.

If we attempt to obtain a very broad bandwidth for a given

Rm , RI must be made low. However, a limit to this approach is
M0

imposed by the bandwidth of the magnetic resonance. The solution

for x" was Eq. (3.18).

I

2 1 2 1T 2 [(H+ )Z + VH' T
T 2 2

In this expression resonance is given when jH o+w is set to 0. That is,

W = -jH

At a frequency w' 4 w,
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tH ° + w' = A, where Aw= w - r

1X1 = 1 H 2 T1

22 TI 2 2

y H -' is very small at power levels applicable to normal maser
2

operation.

The magnitude of x" is I of the maximum value when A= I

Although the line width of the resonance and the bandwidth of the
1

maser amplifier are not directly related, it is clear that y- gives a

reasonable measure of the bandwidth of the amplifier when it is

limited by the line width of the material. This is certainly the case

for non-resonant masers such as traveling-wave masers which

we have not discussed. For very wide-band amplifiers, T 2 must

be short.

Up to this point, the relaxation time T1 has not been mentioned

explicitly in the maser properties. Yet, it is probably the most

important parameter for maser materials. T1 enters the problem

through the factor (N2 -N 1 ) in the expression for x", which was

already seen to be the determining factor in the gain of a maser.

Bloembergen's 4 three-level scheme, given in the intro-

duction, is to apply a sufficiently strong resonant excitation be-

tween the lowest and highest levels of three energy levels so that

their populations, N1 and N 3 , are almost equal. Thip excitation

is in competition with T1 , which represents a process that is

trying to maintain thermal equilibrium.

The excitation power required to make N 3 =N1 can be

computed. At thermal equilibrium,

NAE
0

N3 - N1 = -AN= n .

When this term is too large to be ignored, it will reduce x",

and thereby, the gain. The maser is then in nonlinear operation.

It is then said to be saturated.
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When N 3 =N1 , the deviation of AN from thermal equilibrium is

just AN. The rate of energy loss through TI is then

P= NA

N 0(A.E)

2(KTI T1

It is instructive to estimate this quantity, Suppose N o = 1020

AE = hx3xl0 1 0 = 1. 98x106 ergs

KT = 5. 35 x10 "1 6 ergs at 4. 2 OK

Then, 
TI= 10

P = 335 watts.

This is the power which must be made up by the exciting field.

It must be applied at a very low impedance (very strong mag-

netic field) for saturation. This can be seen from the saturation

condition in the solution to Bloch's equation. In the actual maser,

the cavity must be optimized for the signal frequency. We are not

free to optimize the cavity for pumping. This factor and the

additional losses in the cavity require that the pump provide

several times as much power as that just estimated. It is
-6

evident that the requirement is prohibitive at T1 = 10 " . The

effect of heat produced by such high power dissipatibn must also

be considered.

To sum up, a short TI demands that the pump power be

prohibitively high for maser operation. Such a high pump power

raises the temperature of the maser even in a thermal bath.

Because T1 decreases rapidly with termperature, the pumping

becomes inadequate and maser action cannot be obtained.

Finally, we consider the question of how the three

required energy levels are to be obtained.
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Confining ourselves to Zeeman energy levels, we re-

quire paramagnetic ions with an angular momentum of at least

1 to give the required three states (3=2J+I). In the discussion of

the relaxation time T1 , it was shown that the presence of an

orbital moment leads to a short relaxation time, Therefore,

we require the orbital moment to be as close to zero as

possible.

If the orbital moment were strictly zero, we are left

with a pure spin state with (2 S+l) - fold degeneracy. I S >1,

the application of a magnetic field will yield the required

number of levels as in Fig. 7. Unfortunately, this scheme

will not work because the spin states are pure. The only

transitions possible through a time-varying magnetic field

are those which co.nnect states whose values of M differ by I.

All of these transitions are resonant at the same frequency.

It is not possible to pump between two states which are not

adjacent to each other.

The situation is rescued by a small amount of orbi-

tal moment. It was show n that a small amount of orbital

moment in the presence of a sufficiently anisotropic crystal-

line electrostatic field will partly remove the spin degeneracy

without the application of a magnetic field. This was called

zero-field splitting. When the magnetic field is added, the

Zeeman energy is added to this initial splitting to completely

remove the degeneracy. The total result is that

1) The resonant frequencies for different allowed

transition are now different.

2) The spin states can become mixed so that many

more transitions become allowed. Pumping is

now possible between a number of levels.
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H

Energy levels and allowed transitions in a

pure spin state. Example: S= 5/2.

Figure 7
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The Zeeman energy is proportional to the magnetic

field. For a pure spin state the relation is

AE = 2 H

for allowed transitions. For a signal frequency of 10 kmc, the

field required is 3. 5 kilo-gauss. While this is not an unreasonable

value, the magnetic field requirement becomes prohibitive for

very much higher frequencies.

When zero-field splitting exists, the incremental ratio

of frequency to magnetic field can be improved in some cases.

But, the biggest advantage of the zero-field splitting is that it

simply substitutes for Zeeman splitting. If S is the magnitude

of zero-field splitting given in frequency, it reduces the re-

quired magnetic field by 2.8xi06 from the value required for

pure spin at the same frequency of resonance. In fact, if the

proper zero-field splitting were avaliable, no magnetic field

would be required. Masers based on this scheme have been
41

discussed by Bogle and Symons. It has been successfullyorino42 3+.
operated by Kornienko using Fe impurity in A12 0 3.

As the Zeeman energy becomes large compared to

the zero-field splitting, the energy levels and states approach

the condition for pure spin, and the difficulties associated

with pure spin are encountered once again. For this reason,

the upper frequency limit for a maser material is given

approximately by the zero-field splitting. Thus, in order

to extend the range of the maser to higher frequencies,

materials with higher zero-field splittings must be developed.

III. 3 Summary

The conclusions of the preceding sections are summed

here with some additional remarks.
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The qualities desired of a good maser material are

(a) A long relaxation time, T1

This is necessary if inversion is to be accomplished

without excessive pump power and consequent heating of the

maser material.

(b) *A large transition probability between the inverted states

The susceptibility is proportional to the square of this

quantity.

(c) A large density of paramagnetic ions

Inversion is proportional to the density, other things

being equal. However, density should be kept low enough

to keep magnetic ions separated. Excessively high density

also leads to another type of relaxation which we have not

mentioned: cross relaxation. This can lead to complications

-- some good, some bad. 3

(d) A long T*

The susceptibility is proportional to T 2 . There is an

intrinsic part which is just inversely proportional to the

density of paramagnetic ions. In many ions, there is an

additional component due to the nuclear moments within

the ion and in its neighbors. This should be reduced to a

minimum. Should a large line width be required for a

wide-band maser, the line can be broadened to the desired

value by increasing the density of paramagnetic ions. This

will also help (c).

(e) Zero-field splitting equal to or larger than the intended

maser frequency

This is necessary to make pumping possible and to

reduce the amount of magnetic field required. Because the

See the following page.
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T , which is the characteristic time for destruction of the

magnetic moment normal to the dc magnetic field, is often

discussed in terms of two separate effects. One is a destruc-

tive interference of individual moments due to their having un-

equal precession frequencies. This can arise from slightly

different environments (position in a magnet gap, local distor-

tions in a crystal, etc. ) for different spins. A slight varia-

tion in precession frequency among the spins causes spins,

which were initially all aligned, to lose their alignment in

a short time. This is called inhomogeneous T2 . The other

effect is the resonant interaction between spins of the same

precession frequency. The interaction removes the degeneracy

and thus broadens the line width. This type of line width is

described as "homogeneous T 2 . "

The transient behavior of a spin system differs consider-

ably, depending on whether the line width is due to homo-

geneous or inhomogeneous Tz. However, in steady state,

as in a three-level maser, the distinction need not be made.
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need for very high frequency masers is most urgent, high zero-

field splittings are desired.

CHAPTER IV

A SURVEY OF POTENTIAL CRYSTALS FOR THREE-LEVEL

MASERS

The qualitites desired in a crystal for three-level masers

were discussed in a previous chapter. The problem of finding

or making crystals with those desired qualities is now consi-

dered. This problem has been discussed previously by
44

Singer. There, only crystals which were available syntheti-

cally were considered. Here, consideration is extended to all

crystals. The problem of finding or making crystals with

those desired qualities can be divided into two parts. The first

part is to choose the paramagnetic ion suited to the purpose.

The second is to choose a suitable diamagnetic, dielectric

solid to serve as a host for the paramagnetic ion. Of course,

the two parts are not completely independent. The choice of

one is bound to influence the other.

IV. I The Paramagnetic Ion

The conditions which govern the choice are

1) Long TI.

2) Long T 2 .

3) At least three spin levels.

Van Vleck's theory, showed that spin-orbit coupling was

the mechanism which was responsible for T . A long T 1

requires a small spin-orbit coupling constant X and a small

orbital moment. States which belong to terms of L=O satisfy

this requirement. In addition, even where L 4 0, crystalline
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fields of the proper symmetry were found to split the states in

the manifold of L in such a way that left a singlet state with the

lowest energy. In such a singlet state, the only'orbital moments

present were those re-induced by spin-orbit coupling. This wasX
a second-order process proportional to - , where A. is the

energy from the ground state to a higher obital state j. There-

fore, in such cases, in addition to a small X, large Aj's are

required for long T I. This second condition dictates that the

ground orbital state be a singlet in an octahedral or cubic

symmetry. This is because the common environments of the iron
+

group are usually very close to one of these two symmetries.

The exact, actual symmetry may be lower because of small

deviations, but the removal of degeneracy by such lower sym-

metries will not result in &s large engouh to produce good

quenching.

An exception is made for "non-magnetic" doublets dis-

cussed in Section I. 9. The component states in such a doublet

have quenched orbital moments. In addition, there is no first

order mixing between the components under spin-orbit coupling

so that the quenching is preserved.

The strong dependance of T1 on X must be noted in selecting

ions for long TI.

With respect to T, the following combinations of ion and

symmetry are suitable.

Ion Symmetry Orbital Ground State

Ti 3 + cubic non-magnetic doublet

* cubic singlet

V 2 +  octahedral singlet

Cr 3 + octahedral singlet

CrZ+ octahedral non-magnetic doublet

MnZ+ any symmetry L = 0

Fe any symmetry L = 0

Fe 2 + cubic non-magnetic doublet

Co 2 + cubic singlet

Ni2 +  octahedral singlet

Qu 2 + octahedral non-magnetic doublet
+ See the following page.



Among the combinations listed, Fe 3+ and Mn 2 + are

superior to the others. Cr 3+ in an octahedral field is also

better than the others because of the large energy gap between

the singlet and the next lowest orbital and a small spin-orbit

coupling. Triviwlent ions have larger crystal field splitting and

are, therefore, to be preferred. The non-magnetic doublets

are generally inferior to the singlets. Cu 2 + and Ni 2 + have

rather large values of X. Therefore, they are less desirable.

The contribution by the ion to T2 is the inhomo-
geneous broadening caused by the nuclear spin. When the

hyperfine splitting is large, the lines outside the intended

bandwidth of the maser do not participate in the maser action

and is wasted. The effective density of the spins is reduced.

The choice of ions with respect to T2 falls on those ions with

a minimum of nuclear spin. The desirable ions are Fe2 + , 3+

2+ 2+,3+Ni and Cr 2 ' , in the order given. 2+ 3+

The condition S > I is also satisfied by Fe

Ni and Cr

Ions which satisfy all the conditions are Fe 3+ in
2+ 3+ 2+

any symmetry, Cr , Cr and Ni in octahedral symmetry

and Fe 2 + in cubic symmetry.

In addition to the iron group ions, the two S-state
wae arhs G 3+ adu 2 +

rare earths, Gd + and Eu2 , display long T1. The other rare

earths have short relaxation times due to excessive orbital

moment. Eu2 + is not suited for masers because of its nuclear

moment.

The useful ions listed in the probable order of
3+ 3+ 3+ 2+ 2+ 2

desirability are Fe Cr , Gd , Ni , Cr and FeZ+.

+By cubic symmetry, 8 negatively charged neighbors in a

cubs are designated.By octahedral symmetry, 6 negatively

charged neighbors in an octahedron are designated.
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IV. 2 The Host Crystal

The desired qualities in a host crystal are

a) Absence of paramagnetism for ferromagnetism on the part

of the pure host crystal itself.

b) A minimum abundance and strength of nuclear moment, par-

ticularly in the ions immediately adjacent to the paramagnetic

impurity.

c) Sufficient asymmetry to produce a large zero-field splitting.

d) Good stability. Particularly, resistance to thermal stress

and moisture.

e) A small unit cell, so that all the paramagnetic ions are

magnetically equivalent.

f) If possible, cations of the same valence as the intended para-

magnetic substitute.

g) Cations whose ionic radii are similar to the radii of the

intended paramagnetic substitute.

h) If possible, sufficiently low symmetry to remove orbital

degeneracies in the ground state.

i) Very high resistivity.

The condition on nuclear moment rules out a very large

number of the most commonly available crystals. All the

halides are ruled out because of their nuclear spin. Also ruled

out are all the hydrated crystals because of the nuclear spin

of hydrogen. For the same reason, most organic crystals

are not suitable.

The crystals which may be suited are the oxides, car-

bonates, sulphates, tungstates, chromates, silicates, silicideg,

sulphides and carbides of metals which are not in themselves

paramagnetic and which have a low abundance of nuclear

moment.

The condition that large zero-field splitting should result

is not as easy to apply. The theoretical relation between the

zero-field splitting and the strength and symmetry of the crys-

talline field is well known, but so far, the numerical values of
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the parameters which enter into the expression are not known

with sufficient accuracy to allow even approximate calculation.

We do not know, however, that a cubic symmetry cannot cause a

zero-field splitting in S=l or S=3/2. Therefore, in the case of the
Cr3+ 2+

paramagnetic ions Cr or Ni , a cubic symmetry must be

avoided. A word of caution is in order here. The symmetry,

which in involved, is the point symmetry of the paramagnetic

ion site and not of the crystal as a whole. These two symmetries

usually differ, the point group being lower.

It was noted previously that the positions of the nega-

tively charged neighbors about the metallic cation are usually

very close to octahedral when the radius of the metallic ion

is small compared to the radius of the negative neighbors.

When the negative neighbor is oxygen, this condition is

usually satisfied. We can speculate that this relation is not

followed as closely in the case where the neighboring oxygens

belong to tightly-bound complexes such as SiO4' s04, C0 3

CrO4 or WO 4 . In such cases, the oxygens may not be free

to pack themselves as closely and regularly about the metallic

ion. The regularity can also break down when the metallic

ion is comparable to or larger than oxygen in radius.

The unit cell should be small in order that the para-

magnetic ions are not placed in a number of sites which do not

give the same spectrum. Such a case reduces the effective

number of ions participating in any one resonance except for

special orientations of the magnetic field. By a large unit cell

we mean that the unit cell contains a large number of molecules.

Magnetically, many of these may be equivalent. Two sites

related by inversion, for example, are always equivalent

magnetically because of the inversion symmetry of all para-

magnetic spectra. The number of nonequivalent sites is also

reduced when the spin value S is small or the symmetry is
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very high, for we have seen that, in these cases, details of the

symmetry fail to be registered in the magnetic spectra. If the

sites in a unit cell are nonequivalent only because of these

details which cannot be registered in the paramagnetic spectrum,

the sites become equivalent magnetically. In many cases, even

when the sites are not completely equivalent, there are ample

special orientations which make them equivalent to make them

useful in maser work.

The requirement of proper valence is not a stringent one.

It is true that extensive replacement of the cation by single

impurity requires the valence state of the replacement ion to

be the same as the original ion. For dilute substitutions of less

than .1%, this is not necessary, particularly if the crystal is

not annealed. The excess or deficiency of charge can be

neutralized by a compensating impurity or by an additional

anion in the nearest interstitial. If the interstitial anion or

charge compensating second impurity is close enough to the

paramagnetic ion, the symmetry about the ion is altered suf-

ficiently to influence the spin resonance spectrum. TinkhamZ8

has observed such spectra for Cr 3 + in ZnF2 . Very often,

however, the compensation is sufficiently far away so that

no detectable change occurs in the symmetry about the

paramagnetic ion.

Until recently, it was believed that substitutions could

not occur if the ionic radii of the ions to be exchanged differed

by more than 15%. However, the research in maser materials

within the last two years has shown that substitutions up to the46
order of . 1% may be possible in many cases.

The requirement that the resistivity be very high is

obvious. Even a small resistivity would greatly reduce the

Q of the maser cavity. Furthermore, at microwave fre-

quencies, conductivity leads to skin effect which removes the

-63-



interior of the crystal from participation in maser action. In

this respect, the sulphides must be examined carefully. Some

of the sulphides are fairly good conductors or semiconductors.

Galena (PbS) is a good example.

Some of the sulphides have been used as hosts for para-

magnetic impurities. Mn2 + in ZnS and EuZ + in SrS are notable

examples. Sulphides are not always ionic, and many of them

may prove unsuitable for masers. The same situation exists

with carbides and silicides.

Armed with the considerations stated above, we can

examine the compilation of inorganic compounds given in the
47

Handbook of Chemistry and Physics, WyckoffIs Crystal

Structures 4 8 and the International Tables for X-Ray Crystallo-

graphy. 49 Two facts stand out in such an examination.

a) The lack of suitable crystals which give a cubic

(8-fold coordination) symmetry. The CaF2 (fluorite) structure

is the only such structure. All but one member of this class

must be rejected for one reason or another. CeOZ is the only

possibility. Unfortunately, it is accurately cubic. In addition,

its quadri-valent cation makes it less useful. Three other

structures have 8-fold coordination, but they are very far from

cubic. They are the ZrSiO4 (zirzon) structure, CaWO 4

(scheelite) structure and ZrO . Of these, ZrSiO4 and CaWO 4

are very interesting for other reasons. ZrO2 is difficult to

use because of the quadri-valent cation and its four nonequi-

valent sites.

b) The remarkably small number of suitable crystals

with trivalent cations. La 2 O 3 is practically the only promising

one besides the alretady well-known Al 2 03 (corundum).

A list of some crystals which may be suitable is given

below. This is by no means complete. On the other hand, many

of these crystals may be unsuitable because of some factor

which escaped the author's consideration.

-64-



BaCOs, BaCrO4 , BaO, BaSO 4 , BaWO BaSiO 3

CdCO 3 , CdSiO 3, CdSO 4 , CdWO 4

CaCO , CaSiO 3, CaCrO 4

CeO2

La2 0 3

PbCO3 , PbCrO4, PbSO4 , PbO, PbSO 4 PbSiO3

PbWO4 , MgO, MgCO 3 , MgWO4 , MgSiO 3 , SiO 2

SrCO3 , SrCr.Q4 , SrO, SrSiO 3 , SrSO4 , SrWO4

SnO, SnO2 , SnSO4

TiO2

ZnCrO 4 , ZnCO , ZnO, ZnSiO 3 , ZnSO 4

ZrO2 , ZrSiO4

The exact structures of many of the silicates are not yet

known. The metasilicates of known structure have very large unit

cells. CaSiO3 , for example, has 12 molecules in a unit cell.

Perhaps, the only interesting crystal in the group is zircon, which

has four molecules in a unit cell. Fortunately, all the sites are

equivalent. The local symmetry is 42m. 8 oxygens form the

nearest neighbors.

The sulphates which are listed are all of the same

orthorhombic structure. There are four molecules in a unit cell.

However, they are made up of pairs, related by inversion so that

only two sites are nonequivalent magnetically. The radii of the

cation are very large. This results in a high coordination number(12)

and low point symmetry (m). All the cations are divalent.

The carbonates are of two distinct structures. The smaller

cations result in the trigonal structure of CaCO3 (calcite). The

point symmetry at the cation site is also trigonal (C 3 ). The two

sites in the unit cell are not equivalent. The structure of the car-

bonates with large cations is similar to the sulphates. The point

symmetry about the cation is m. The cations are surrounded by
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six oxygens in a distorted octahedron.

The tungstates have already been successfully exploited

as hosts for paramagnetic ions. They are of two types. Those

with large cations form tetragonal crystals. There are four

molecules in a unit cell, but all are equivalent. This is a parti-

cular virtue of this structure. Tungstates with small cations form

monoclinic crystals which are isomorphous (have the same

structure and aize; therefore, interchangeable) with most of the

tungstates of the iron group. They have two molecules in a

unit cell. The two cation sitesare equivalent. Both types have

shown great promise in maser applications.

The chromates are divided into three structures. Those

with big cations (CaCrO 4 ) have the same structure as ZrSiO 4

and are very suitable. The four cation sites in a unit cell are all

equivalent. The local symmetry is 42m. Another structure is that

of ZnCrO 4 and CdCr O 4 . These crystals are orthorhombic. The

local symmetry is -. The four cations in a unit cell are allm
equivalent. The coordination around the cation is a distorted

octahedron. PbCrO4 is monoclinic and has two nonequivalent

sites.

The oxides are also divided into a small number of groups.

The oxides MgO, CaO, BaO, SrO and CdO are accurately cubic

with exact octahedral coordination about the cation.

A very interesting crystal is La 2 ( 3 . It has only one mole-

cule in a unit cell. The two La 3+ in the unit cell occupy sites

which are related by inversion, making the sites equivalent

magnetically. The local symmetry is 3m. Furthermore, it

is an ideal host for trivalent ions. Gd 3 + in La 2 0 3 should be

an ideal combination.

TiO2 and SnO2 constitute another class. The unit cell

contains two cation sites which are not equivalent. The local

symmetry is orthorhombic. The apparent success of TiO2 as

a maser material raises hopes that other crystals with
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quadri-valent cations may be successful. CeO Z with the

accurately cubic fluorite structure may be such a crystal.

PbO andSnO have atetragonal crystal with 2 cations per unit

cell. The local symmetry is given as 4mm. The two sites are

equivalent magnetically. This crystal is not strictly ionic, and

its suitability is a question mark.

CONCLUSION

The following combinations of crystal and paramagnetic

impurity seem to be particularly promising.

La 2 0 3  It should be an ideal host for Gd 3+ . It should also be
3+very good for Fe . However, the large difference

in ionic radii causes some concern. The 7-fold co-

ordination does not permit us to say what the orbital
Cr3+ 2+ 2+ Z+

ground state of Cr + , Ni , Cr and Fe will be

with any assurance. They may be favorable. Rare

earths are difficult to separate from each other.

Growing pure La 2 0 3 without other rare-earth

impurities may be difficult. The line broadening

due to the nuclear moment of La should not be too

large because La woild not be the nearest neighbor

of paramagnetic impurities.

CaCrO4  Fe 3 + and Gd 3 + should be good. Again, the large

difference in ionic radii of Ca 2 + and the iron group

impurities causes some concern. The 8-fold coordi-

nation is far from cubic so that it is difficult to say
Cr Z + 2+

what the orbital ground states for Cr + , Ni , Fe

and Cr 2 + will be. They may be favorable. Irregular

coordination may result in large zero-field splitting.
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ZnCrO 4 1 In spite of having four molecules in a unit cell, all sites

CdCrO 4  are equivalent. The point of symmetry is only mm. The

J 4-fold coordination about the Zn, Cd, sites make them
particularly attractive. In some structures the positions

of Cr 6 + and the other metallic cation become interchanged.

ZrSiO4  The situation is identical with CaCrO 4. 3+

CaWO 4 j These crystals have already been examined with Fe
BaWO4  and Gd 3+ . 13 The results have been excellent. The

SrWO 4  success in introducing Fe 3+ gives hope that other

crystals with large cations will likewise accept Fe

The coordination is 8-fold.but far from cubic. The3+

absence of any report on Cr may indicate that the

sign of the crystalline field puts the orbital triplet

lowest.

MgWO 4 1 These crystals have shown very good characteristics

ZnWO4  with Fe 3+ impurity. 12

CdWO 4 J

The following crystals will yield two spectra for ions
with S > 2. Nevertheless, they show features which warrant investi-

gatibn.

CaCO 3 I These crystals should be good hosts for Fe 3 + , Gd 3+

2+ 2+
MgCO 3  Ni and Cr . The coordination is close to octahedral

I'2+ 2+ZnCO 3 j assuring a singlet orbital state for Ni and Cr
Structure is fairly similar to Al 2 03 The nuclear spin

content is exceptionally low.

BaCO These crystals also feature low nuclear moment and an.31
SrCO 3 J octahedral coordination.

PbCO 3
PbCrO-

4
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BaSO4  The very high (12) andirregular coordination makes it

SrSO 4 difficult to make any predictions. If Fe 3 + or Gd 3 +

PbSO4  can be introduced, large zero-field splitting may

result. It is difficult to predict the degeneracy or

near degeneracy of the orbital ground state for Cr 3 +

2+ 2+ 2+
Cr , Fe or Ni

TiO2 f TiO2 crystals with Fe 3 + have already shown huge

SnO. zero-field splitting.

Other interesting combinations are as follows:

MgO The pure octahedral field can give zero-field splitting

BaO/ in Fe and Gd . Nevertheless, the high symmetry

CaO imakes them difficult to use in three-level masers.

CeO2 This is the only crystal with 8-fold coordination

cubic symmetry about the cation. Fe2 + should be

very interesting if it can be made to substitute the

quadri-valent Ce. Very large zero-field splitting

should result. 18

Before concluding this section, two more classes of

crystals deserve mention. 49 Tlhey are the borates and the phos-

phates. These crystals were excluded from the preceding dis-

cussion because of their abundant nuclear spin. However, as in

A12 0 3 , the nuclear spins reside not in the immediate neighbors

but in the next nearest neighbors of a paramagnetic impurity.

Therefore, the contribution to the line width is small. The borates

are particularly attractive because they form stable crystals,

and they generally form crystals with trivalent cations. There

is a lack of literature on the borates. However, it is found that

LaBO3 has the same structure as calcite. It should be an ideal

host for Fe + , Gd 3 + and Cr + . The approximately octahedral

arrangement of oxygens around the cation should give a singlet

orbital state as the ground state for Cr 3+
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IV. 3 Availability of Crystals

Most of the crystals in the preceding section have been

known as natural crystals: some as gems and semiprecious

stones. Various impurities are present in natural crystals,

and paramagnetic resonance due to such impurities have been

studied. Only in a few fortunate instances, however, do the

crystal and impurity form the combination desired in a three-

level maser. Even when the right combination is present, the

concentration may not be optimum; an abundance of other un-

desirable impurities may be present; or single crystals may

be too small. A crystal must be available synthetically before

it can be a practical maser material. Only then can all the

properties be controlled to specifications. The particular

prominence of ruby (A12 0 3 :Cr) as a three -level maser

material is largely due to its availability in synthetic form.

TiO2 is also investigated because it is available synthetically.

Growing synthetic crystals is not necessarily difficult.

In a great many cases, it is simply the lack of sufficient

scientific or commercial incentive which has resulted in

their neglect. Perhaps, in a number of crystals, all that

is required is to try. However, the very great difficulty

experienced in the growth of synthetic diamond and quartz

should restrain one from too much optimism. Generally

speaking, crystals which can be melted at reasonable

temperature and pressure, or crystals which can be dis-

solved in some solvent are probably easiest to synthesize.

For example, hydrated crystals can be grown readily

from solution. The very insoluble BaSO4 is difficult to grow.

CaWO 4 can be grawn from a melt. Crystals such as CaCO 3
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deco mpose upon heating so that growth from a melt is not

possible.

Among the crystals which were classified as promising

or interesting in the preceding section, the following have

been grown: MgO, CaWO4 , MgWO 4 , ZnWO 4 , CdWO 4 , and

TiO .
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